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ABSTRACT 
 

The paper presents a brief overview of the predicted deformation and failure 
characteristics of noncircular composite cylinders subjected to torsion. Using a 
numerical analysis, elliptical cylinders with a minor-to-major diameter ratio of 0.7 
are considered. Counterpart circular cylinders with the same circumference as the 
elliptical cylinders are included for comparison. The cylinders are constructed of a 
medium-modulus graphite-epoxy material in a quasi-isotropic lay-up. Imperfections 
generated from the buckling mode shapes are included in the initial cross-sectional 
geometry of the cylinders. Deformations until first fiber failure, as predicted using 
the maximum stress failure criterion and a material degradation scheme, are 
presented. For increasing levels of torsion, the deformations of the elliptical 
cylinders, in the form of wrinkling of the cylinder wall, occur primarily in the flatter 
regions of the cross section. By comparison the wrinkling deformations of the 
circular cylinders are more uniformly distributed around the circumference. 
Differences in the initial failure and damage progression and the overall torque vs. 
twist relationship between the elliptical and circular cylinders are presented. Despite 
differences in the response as the cylinders are being loaded, at first fiber failure the 
torque and twist for the elliptical and circular cylinders nearly coincide. 
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INTRODUCTION 
 

Cylinders are often used as idealized models for structures such as aircraft 
fuselages, missile bodies, and tanks for storing and transporting various liquids and 
gases. Of general interest are deflections, stress levels, buckling loads, post-
buckling response, vibration frequencies, and interaction with end-fittings, supports, 
and stiffeners. Structures based on cylinders with a circular geometry are very 
common and have been utilized and studied extensively. However, dimensional 
constraints or the nature of the payload to fit within the cylindrical structure may 
dictate that a noncircular geometry be considered. There may also be design 
advantages to a noncircular geometry, for example, to blend the wings and 
cylindrical body in advanced aircraft designs, or to achieve better lift characteristics 
from a flatter undersurface of an aircraft body. 

A review of the structural analysis of noncircular cylinders through the late ‘90s 
is discussed in Reference 1, some of which addresses fiber-reinforced composite 
materials. Additional work with noncircular fiber-reinforced cylinders is discussed 
in References 2-7. For a cylinder with a noncircular cross section, the radius of 
curvature varies with circumferential position. This change in the radius of 
curvature can lead to a nonuniform stress state that results in what could be 
considered a stress concentration at specific circumferential locations. Because of 
the increased stress levels, material failure can begin at these circumferential 
locations. The severity of the problem depends to some extent on the particular 
loading, and combined loads add to the complexity of the problem. One approach to 
understanding the details of the response of noncircular cylindrical structures is to 
first consider simple and fundamental loadings. This approach is taken in 
References 3-7, where the response to a temperature change alone, an axial loading 
alone, and an internal pressure alone have been studied. Other fundamental loads of 
interest are torsion and bending, with the former being the subject of this paper. 

The objective of this paper is to present analytical results of the predicted 
deformation and failure characteristics of noncircular composite cylinders subjected 
to the twisting of one end of the cylinder relative to the other. A full understanding 
requires considering the response well into the post-buckling regime. Here, twisting 
to first fiber failure is considered. As might be expected, matrix failure occurs 
before first fiber failure occurs. Though first fiber failure may be a somewhat 
arbitrary stopping point, it is the metric adopted for this study. The dimensions of 
the elliptical cylinder considered correspond to cylinders investigated in earlier 
experiments [6, 7] for other types of loading. Since material orthotropy influences 
the response of most composite structures, the noncircular cylinders considered here 
are constructed of an eight-layer quasi-isotropic lay-up. Thus the influence of the 
noncircular geometry on deformation and material failure is not masked by the 
influence of material orthotropy. As a comparison, a quasi-isotropic circular 
cylinder with the same circumference as the elliptical cylinder is studied. 
Noncircular and circular cylinders with the same circumference and length weigh 
the same. The predictions presented are determined using the finite-element code 
STAGS [8]. 

The next section describes the problem to be investigated. The geometry, 
coordinate directions, positive sense of the twist and off-axis fiber angles, material 
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properties, boundary conditions, and the finite-element model are described. In the 
section following that, since a specific cylinder geometry is being considered, 
comments regarding the effect of cylinder geometry on the buckling, or critical, 
angle of twist are presented. Unlike a cylinder constructed of aluminum, the 
direction, or sign, of the twist is important because of the presence of the bending-
twisting stiffness terms D16 and D26. In subsequent sections the discussion focuses 
on the torsional moment, or torque, vs. twist characteristics and overall deformation 
and failure characteristics of elliptical cylinders for increasing levels of twist. 
 
 
PROBLEM DESCRIPTION 
 

The geometry considered is described in Figure 1a. The elliptical cross section 
of the cylinder has major diameter 2a, minor diameter 2b, length L, and wall 
thickness H. A positive twist for the cylinder, φ, a positive associated torque, T, a 
positive fiber direction relative to the axial direction, θ, and a measure of 
circumferential arc-length, s, are also shown in Figure 1. The maximum and 
minimum radii of curvatures of the cross section, which occur at the ends of the 
minor and major axes, respectively, are given by the relationships 
 

 
2 2

max min

a b
R and R

b a
= = . (1) 

 
The counterpart circular cylinder (not shown) has radius R, and the relationship 
between R and the geometric parameters of the ellipse is 
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where t is a nondimensionsal parameter. The assumed elliptical cylinder geometry 
is shown in Table I. 

 
 

TABLE I: ELLIPTICAL CYLINDER GEOMETRY 
a 0.127 m (5 in.) 
b 0.0889 m (3.5 in.) 
L 0.292 m (11.5 in.) 
H  8h 

h (layer thickness) 0.1397 mm (0.0055 in.) 
 
 
With these dimensions, the ratio of the minor diameter to major diameter is 0.7, a 
value for which the ellipticity is noticeable, and the radius of the circular cylinder is 
R = 0.1088 m (4.283 in.). 

The STAGS finite-element representation of the cylinder geometry consists of 
6120 four-noded quadrilateral 410 elements, and is shown in Figure 1b. The 410 
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element enforces the Kirchhoff hypothesis. The finite-element mesh consists of 120 
elements in the circumferential direction and 51 in the axial direction. The 
dimensions of the element in the circumferential and axial directions are the same at 
all locations. The cylinder is loaded kinematically by rotating about the cylinder 
centerline (the x-axis) the end of the cylinder at x = L/2 an amount φ relative to the 
end at x = -L/2. Each end maintains the geometry of the original elliptical cross 
section. This rotation is accomplished in the finite-element model by restraining all 
degrees of freedom of the nodes at x = -L/2 and constraining the nodes on the end at 
x = L/2 to remain in a plane and move as if attached to rigid links, the other ends of 
which are joined at a common point. This common point is actually a node in the 
finite-element analysis located on the x-axis. The rigid links are in a plane 
perpendicular to the x-axis and they rotate, in that plane, about the common point. 
Free axial motion of that plane is allowed, and except for what is effectively rigid 
body rotation and axial movement, the cylinder nodes at the rotated end are 
assumed to be clamped like the restrained end. The applied rotation φ  of the end at 
x = L/2 is controlled by specifying the rotation of the common node about the x-
axis. The torsional moment, or torque, corresponding to the applied rotation is 
computed by the finite-element analysis.  

The quasi-isotropic lamination sequence considered is [±45/0/90]s. Material 
properties representative of a medium modulus graphite-epoxy composite material 
are assumed. The engineering properties for a single layer are defined in Table II, 
where standard composite material nomenclature in the principal material 
coordinate system has been used.  

When examining the character of the predicted material failure, only failures 
within the planes of the individual layers are considered. The assumed failure 
modes are: failure parallel to the fiber direction due to fiber tensile or compressive 
failure; failure transverse to the fiber direction, due to matrix or fiber-matrix 
interface tensile or compressive failure; in-plane shear failure due to matrix or fiber-
matrix interface shear failure. The maximum stress failure criterion is applied on a 
layer-by-layer basis, and the engineering properties are degraded when failure is 
detected. The degraded engineering properties, in turn, result in a stiffness matrix 
that reflects material softening due to failure. The five basic intralayer modes of 
failure in the principal material coordinate system are denoted as 
 
Xt = tensile failure stress in fiber direction  
 
Xc = compressive failure stress in fiber direction (a positive number) 
 
Yt = tensile failure stress transverse to fiber direction 
 
Yc = compressive failure stress transverse to fiber direction (a positive number) 
 
S12 = intralayer shear failure stress 
 
Numerical values of the failure stress levels for the five failure modes are shown in 
Table II. 
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TABLE II: MATERIAL PROPERTIES 
E1 130 Gpa (18.85 × 103 psi) 
E2 9.7 Gpa (1.407 × 106 psi) 
G12 5 Gpa (0.725 × 106 psi) 
ν12 0.3 
Xt 1.482 Gpa (215 × 103 psi) 
Xc 1.241 Gpa (180 × 103 psi) 
Yt 0.05 Gpa (7.25 × 103 psi) 
Yc 0.2 Gpa (29 × 103 psi) 
S12  0.1 Gpa (14.5 × 103 psi) 

 
 
RESULTS AND DISCUSSION 
 

When composite cylinders are twisted, the buckling load is different whether 
the direction of twist about the cylinder axis is positive or negative. This 
phenomenon has been observed in circular cylinders as discussed in References 11-
12, and is best explained for the lay-up used in this paper as follows:  Due to the 
fact that within the cylinder walls the +45° layers are farther apart than the -45° 
layers, the value of the laminate bending stiffness in the +45° direction is greater 
than the value of the laminate bending stiffness in the -45° direction. Referring to 
Figure 1, a negative twist of the circular cylinder causes a compressive stress 
resultant in the -45° direction, and a positive twist causes a compressive stress 
resultant in the +45° direction. Since the bending stiffness is greater in the +45° 
direction, it takes a greater compressive stress resultant acting in the +45° direction, 
and hence a greater positive twist, to produce buckling in the cylinder wall than if 
the compressive stress resultant were acting in the -45° direction. 
 
Influence of length-to-radius ratio 
 

Before describing the details of cylinder response, it is instructive to put into 
context the geometry of the particular cylinders being investigated. The dependence 
of the angle of twist required to produce buckling on the length-to-radius ratio of 
the cylinder, as computed using a nonlinear eigenvalue analysis for both positive 
and negative twist and for both elliptical and circular cylinders, is illustrated in 
Figure 2. The critical angle of twist, expressed as twist per unit length of cylinder, is 
taken to be the lowest eigenvalue computed. For the elliptical cylinder L/Rmax is 
taken as the measure of the length-to-radius ratio. Also noted in the figure, by solid 
symbols, are the values for the cylinders considered herein. As can be seen, there 
are four distinct relationships. For both the circular and elliptical cylinders, applying 
a negative twist causes the cylinder to buckle at a lower level of twist than applying 
a positive twist. Independent of the sign of the twist, the buckling values for the 
elliptical cylinder are less than the values for the circular cylinder.  

As the length of the cylinder increases relative to its radius, the difference 
between the relations for positive and negative twist decreases, and the difference 
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between the relations for elliptical and circular cylinders decreases. For the 
elliptical cylinders considered here 

max
/ 1.60L R = , while for the circular cylinders 

/ 2.69L R = . For the elliptical and circular cylinders, respectively, 
min

/ 4.69L R =  
and 

min
/ 56R H =  and / 97R H = . Based on Figure 2, the slopes of the curves near 

the points for the cylinders considered here indicate boundary effects may influence 
the results. Longer cylinders are needed to reduce boundary effects. However, the 
dimensions of the elliptical cylinders analyzed in this paper were chosen because of 
the existing capability of fabricating the cylinders for experiments [6, 7].  

The positive angle of twist that results in buckling of the counterpart circular 
cylinder, the solid red square in Figure 2, is 

 
 cir+

cr 0.0114 rad (0.66deg)! =  (3) 
  
where the superscript ( )cir+ refers to the circular cylinder twisted in the +φ direction, 
and the subscript ( )cr refers to the critical value at which buckling occurs. Using 
length L = 0.292 m (11.5 in.) and the angle of twist from Equation 3, the positive 
angle of twist per unit length that results in buckling of the counterpart circular 
cylinder is 
 

 
cir+

cr

0.039 rad/m (0.00099 rad/in.)
L

!" #
=$ %

& '
 (4) 

  
The associated buckling, or critical, level of torque is 
 
 cir+

cr 6840N m (60,600lb in)T =  (5) 
 
These quantities will be used for normalization in subsequent calculations. 
 
Torque-twist relationship 
 

Inevitably, imperfections of some sort occur in most composite structures. For 
existing structures, any deviation from the intended geometry can be measured and 
considered in any analysis of the structure. In this case, without actual cylinders to 
consider, imperfections are added to the perfect geometry using small-amplitude 
deviations in the form of the buckling mode shapes. Normalized mode shapes 
associated with the first few torsional buckling eigenvalues are each multiplied by a 
small fraction of the wall thickness and added to the perfect geometry. Here, the 
first four mode shapes are combined with different weighting factors to give 
imperfections with a range of characteristics. Four of these cases will be discussed 
here, the results from these cases being representative of all cases investigated. 

The first and fourth buckling mode shapes of the perfect elliptical cylinder 
subjected to a negative twist are shown in Figures 3a and 3b, respectively. Though 
these two mode shapes look similar due to their overall helical nature, the 
differences are illustrated in Figures 3c and 3d. At the midlength of the cylinder (x 
= 0), the circumferential variation of the displacements, normalized to unity and 
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normal to the surface of the ellipse, is illustrated in Figures 3c and 3d. In the figures 
the circumferential arc length location s is normalized by cylinder circumference C. 
Note that the first mode shape has seven waves in the circumferential direction and 
the fourth mode has eight. Note also that the amplitude of the waves is larger in the 
flatter regions of the cross section (s/C ≈ 0, 0.5) than in the more highly curved 
regions (s/C ≈ 0.25, 0.75). The eigenvalue associated with the first mode shape in 
Figure 3a corresponds to the solid green triangle in Figure 2. 

The corresponding two mode shapes for the circular cylinder are shown in 
Figures 4a and 4b, where the eigenvalue associated with the first mode shape in 
Figure 4a corresponds to the solid blue circle in Figure 2. At the cylinder midlength, 
the variations with circumferential location of the normal displacements for the first 
and fourth mode shapes are illustrated in Figures 4c and 4d. There are eight 
circumferential waves for the first mode, and seven for the fourth mode. The 
amplitude of the waves is uniform with circumferential location. 

The modes for the six imperfections considered are shown in Table III. In four 
cases the weighting factors multiplying the first four mode shapes sum to 0.1H, or 
10% of the cylinder wall thickness, and in two cases they sum to 15%. The 
discussions will focus on the response of cylinders with imperfection IDs 01, 04, 
11, and 14. These particular imperfections provide a mix of the mode shape 
weighting factors as well as a variation of the imperfection amplitude. 
 
 

TABLE III: IMPERFECTIONS CONSIDERED 
         Mode (×H) 

 
Imperfection ID   

1st 2nd 3rd 4th Total 

01 0.04 0.02 0.02 0.02 0.10 
02 0.02 0.04 0.02 0.02 0.10 
03 0.02 0.02 0.04 0.02 0.10 
04 0.02 0.02 0.02 0.04 0.10 
11 0.06 0.03 0.03 0.03 0.15 
14 0.03 0.03 0.03 0.06 0.15 

 
 

As an example of the response of the cylinders considered, the torque vs. twist 
relationships for several cases are illustrated in Figure 5. In this and subsequent 
similar figures, the twist per unit length and torque have been normalized by the 
values that result in buckling of the counterpart circular cylinder when twisted 
positively, i.e., the value for the solid red square in Figure 2 and given by Equations 
(4) and (5), to obtain 

! 

"  and   

! 

T . The nearly straight red and blue lines in Figure 5 
extending to a normalized torque level of 1.2 are the torque vs. twist responses, 
respectively, of the perfect elliptical and perfect circular cylinders for twist up to 
and greater than the critical eigenvalues. Despite the inclusion of geometric 
nonlinearities in the analysis, the torque vs. twist responses exhibit virtually linear 
behavior. The critical eigenvalues for the perfect cylinders, from Figure 2, are 
indicated on these lines as solid symbols and the differences between the critical 
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eigenvalues for positive and negative twist are evident, as they were in Figure 2. 
For twist levels greater than these critical eigenvalues, the cylinders are unstable.  

The dashed and dash-dot lines in Figure 5 represent the torque vs. twist 
relationships for cylinders with imperfection ID 01. For imperfect elliptical and 
circular cylinders and for low levels of twist, the torque vs. twist relationships 
nearly coincide with the relationships for the perfect cylinders and the torque 
increases in a nearly linear fashion with increasing twist angle. At larger levels of 
torque, however, the torque vs. twist relations rapidly deviate from their nearly-
linear character, the torque reaches a maximum level, and then decreases with 
increasing twist. For example, for the imperfect elliptical cylinder with a negative 
twist, the response identified by the yellow long-dashed line, the response deviates 
from the nearly-linear path at a normalized torque level of approximately 0.60, 
while the critical value occurs at a torque of 0.66 and is identified by the solid red 
triangle on the red line. The torque reaches a level of approximately 0.68, then 
decreases. The response of the imperfect elliptical cylinder is much the same for a 
positive twist, except the levels of torque at which deviation from the nearly-linear 
path (≈ 0.78) and the maximum occur (≈ 0.85)  are greater than for a negative twist. 

For the imperfect circular cylinder, the relationships, shown by the blue dash-
dot line and green dash-double dot line, reach higher levels of torque, a 
characteristic presented in Figure 2. Furthermore, the maxima in the relationships 
are reached in a more pronounced fashion than for the elliptical cylinder, and the 
maxima occur at lower levels of twist. In fact, the difference between the imperfect 
elliptical and circular cylinders can be characterized by stating that the relations for 
the imperfect elliptical cylinder tend to slowly reach their maxima once they have 
deviated from the nearly-linear relationships, while the relationships for the circular 
cylinder more quickly reach their maxima and then decrease. Interestingly, as the 
twist angle increases and the torque levels decrease, the relationships for the 
circular and elliptical cylinders nearly coincide.  

Wrinkling of the cylinder wall, in a helical pattern much like the buckling 
modes of Figures 3 and 4, is responsible for the reduced levels of torque as the twist 
increases. End views of the wrinkling behavior of the elliptical and circular 
cylinders at the same level of twist are illustrated in Figure 6, in exaggerated 
fashion. For the circular cylinder, shown in Figure 6b, the amplitude of the 
wrinkling deformations is distributed more or less uniformly around the 
circumference of the cylinder, whereas for the elliptical cylinder, shown in Figure 
6a, the wrinkling is more pronounced in the flatter regions of the cross section 
relative to that in the more curved region. 

The differences in the circumferential distribution of wrinkles between the 
elliptical and circular cylinders explains why the torque vs. twist relation for the 
elliptical cylinder does not seem to have as pronounced maxima as those for the 
circular cylinder. With the elliptical cylinder, as the twist level increases, wrinkling 
starts in the flatter portions of the cross section, while the more highly curved 
portions remain relatively undeformed. The cylinder begins to soften in torsion. As 
the twist level continues to increase, the wrinkling spreads around the 
circumference and the softening effect increases. However, due to the spreading 
character of the wrinkling, the softening is gradual. In contrast, with a circular cross 
section, no particular circumferential location is different than any other 
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circumferential location. The same level of wrinkling occurs at all circumferential 
locations as the twist level increases. The cylinder more suddenly softens as the 
wrinkles develop in concert everywhere around the circumference. For a given level 
of twist, the amplitude of the wrinkles in the flatter portion of the elliptical cross 
section are greater than the amplitude of the wrinkles in the circular cross section. 
At a twist level of 0.04 rad/m (0.001 rad/in.), the wrinkling deflections in the ellipse 
are slightly greater than three wall thicknesses in magnitude. 
 
Material failure 
 

The progressive failure analysis option in STAGS is used to predict failure as 
the level of twist increased. Using the maximum stress failure criterion, the 
potential for failure is checked in each finite element at eight integration points 
within each layer, two in the thickness direction of each layer at each of the four 
Gauss points normally associated with a four-node element, for a total of 64 
integration points per element. However, in counting failures within an element 
only the initial failure of a layer at each of the Gauss points is counted, resulting in 
32 failure counts per element. When failure due to excess stress perpendicular to the 
fiber direction is predicted, the modulus E2 and shear modulus G12 are multiplied by 
a degradation factor of 0.2 [9] at that integration point to reflect a local loss of 
stiffness. When failure due to excess shear failure is predicted, the shear modulus 
G12 is multiplied by the degradation factor. These two types of failure are identified 
simply as matrix failure, with details supplied when discussing specific cases. When 
failure due to excess stress parallel to the fiber is predicted, identified as fiber 
failure, the modulus E1 and shear modulus G12 are multiplied by the degradation 
factor. For all types of failure, a recursive degradation procedure is used, whereby 
once failure is detected at a point, the degradation factor is applied for each 
subsequent load step in the nonlinear analysis scheme, the affected engineering 
properties at a particular integration point thus approaching small fractions of their 
original values a few load steps after initial failure. To alleviate convergence 
problems when the number of failures begins to become large, artificial viscous 
damping [10] is applied to the model to reduce the effect of the loss of stiffness. 
Artificial viscous damping temporarily adds part of the degraded extensional 
stiffness, either E1 or E2, back at a failed point.  In STAGS, the failure count within 
an element is based on the initial failure of a layer each of the four Gauss points. 

For the elliptical cylinder, as the angle of twist is increased, material failure is 
predicted to begin at the midlength location of the cylinder. This location of failure 
is somewhat unexpected, since clamping effects can cause serious stress 
concentrations and subsequent material failure near the ends of a cylinder. 
However, the material failure appears to be directly related to the degree of cylinder 
wall wrinkling, which is considerably reduced at the cylinder ends due to the 
boundary conditions. A summary of the failure scenario for an elliptical cylinder 
with imperfection ID 01 is illustrated in Figure 7. A negative twist is considered. 
The torque vs. twist relationship is illustrated in Figure 7a and is identified by the 
orange long-dashed line. The relationship for the perfect elliptical cylinder, as 
shown earlier in Figure 5, is represented by the red nearly-straight line, and the 
critical condition for that case is identified by the solid red triangle on the line. The 
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nearly-linear relationship for the imperfect cylinder for low levels of twist is 
evident, followed by the torque reaching a maximum value and then decreasing 
slowly for increasing levels of twist. Values of  !  labeled b, c, d, and e in Figure 7a 
correspond to identification of Figures 7b-e, which highlight the locations of the 
failures in the imperfect cylinder. 

Figures 7b-e and Figures 8b-e are to be interpreted as follows:  Any finite 
element that is colored, or shaded, contains integration points that have registered 
failure due to any of the five possible failure modes. The color assigned to that 
element depends on the failure count within the element. Specifically, the color 
depends on the failure count registered relative to the maximum failure possible 
count, the ratio being expressed as a percentage. Alternatively, the color depends on 
the percentage of element that has failed. With either interpretation, the legend to 
the right of Figures 7b-e defines the relation between percent level of failure and 
color. For the twist level in Figures 7b, it can be seen that the maximum amount of 
failure in any element is approximately 6%. 

Point b, where 1! " , corresponds to the first indication of failure, which is a 
matrix failure due to excess tension perpendicular to the fiber direction. As 
indicated, Figure 7b corresponds to case of having 16 failures counted, and as can 
be observed, the first matrix failures occur in the flatter portion of the cylinder cross 
section. There actually are other matrix failures in the other flatter portion of the 
cylinder cross section on the underside of the cylinder, which is not visible in the 
figure. These first failures occur in the low point of the wrinkle in the deformation 
pattern. These failures are in the +45° layer on the inside of the cylinder. 

As the twist is increased, as seen in Figure 7c, further matrix failures occur at 
the low point of the wrinkle where failure begins, and at the high and low points of 
adjacent wrinkles. With a further increase in twist, Figure 7d, there are failures at 
every high and low point of the wrinkled deformation pattern. These failures are all 
matrix failures due to tension perpendicular to the fiber direction. When the twist 
reaches the level shown in Figure 7e, a level of 1.8! "  in Figure 7a, the first fiber 
failures occur. These failures occur in the portion of the cylinder cross section 
between the maximum and minimum radii of curvature. They occur in the -45° 
outer layer and are due to compression in the fiber direction. The captions of Figure 
7 provide information as to the degree to which failures are accumulating. The 
number of failures counted is given, as well as the maximum count possible in the 
model. As can be determined for twist to first fiber failure, the accumulation of 
failures is low. 

The torque vs. twist relationship of the cylinder when material failure is not 
considered is also shown in Figure 7a. This relationship is identified by the blue 
short-dashed line. It is noted that the relationships with and without failure are quite 
similar, although after failure begins, the torque levels with the effects of failure 
included are slightly less than the torque levels with no failure included. This 
similarity implies that what softening there is due to matrix failure does not have a 
big impact on the overall torsional stiffness. Wrinkling is the primary cause of the 
degradation of the torsional stiffness, a geometric rather than material effect. As 
stated, only the cylinder response to first fiber failure is discussed here. However, 
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studies for twist levels beyond first fiber failure indicate that the torsional stiffness 
can decrease considerably as the number of fiber failures increases. 

A summary of the failure scenario for the counterpart circular cylinder with 
imperfection ID 01 is illustrated in Figure 8. Again, a negative twist is considered. 
The torque vs. twist relationship is illustrated in Figure 8a and is identified by the 
orange long-dashed line. The relationship for the perfect cylinder is the red nearly-
straight line shown earlier in Figure 5, with the critical condition for that case 
identified by the solid red circle on that line. The torque vs. twist relationship for 
the imperfect cylinder, but not considering the effects of material failure, is shown 
for comparison and is identified by the blue short-dashed line. The locations of the 
initial failures, at 1! " , is illustrated by Figure 8b. Initial failure occurs in a number 
of locations, namely, all the low points of the wrinkles in the deformation pattern. 
The failures are distributed uniformly around the circumference. As the twist level 
increases, shown in Figure 8c, the number of failures increases, and occurs at the 
high points of the wrinkled deformation pattern as well as the low points, and the 
increases occur uniformly around the circumference. The presence of the 
imperfection causes the failures not to be uniform around the circumference, but the 
lack of uniformity is difficult to detect. This pattern of increased failures continues 
to first fiber failure, shown in Figure 8e. 

To provide a somewhat broader view of role of cylinder geometry and 
imperfections, the torque vs. twist relationships for elliptical and circular cylinders 
with imperfection IDs 01 and 11 and positive and negative twist angles are 
illustrated in Figures 9a and 9b, respectively. The relations for elliptical and circular 
cylinders with imperfection IDs 04 and 14 are illustrated in Figures 10a and 10b, 
respectively. The torque vs. twist relationships for the perfect cylinder, with the 
critical points identified, and for the imperfect cylinder considering failure and 
positive and negative twist are shown in these four figures. The locations of the first 
matrix failures are identified for each case by small arrows, and the relationships 
terminate at first fiber failure. Also included are the relationships for the perfect 
cylinders, identified by the red and blue nearly-straight lines, and the critical 
conditions for these perfect cases, which are identified by the solid symbols on 
these lines. 

Several points can be made by considering Figures 9 and 10. First, since Figures 
9a and 9b are almost identical, and Figures 10a and 10b are almost identical, it can 
be concluded that the magnitude of the imperfection, i.e., 0.1H or 0.15H, has little 
influence on the character of the relations for the imperfect cylinders. Second, based 
on Figures 9 and 10, when the fourth mode shape is weighted more, the twist 
required for first fiber failure is greater, so the mode shape mix of the imperfection, 
i.e., weighting the fourth mode shape more than the first mode shape, has an 
influence on the torque vs. twist relationship. This influence is more significant for 
circular cylinders than for elliptical cylinders. Third, and as previously discussed, 
the relationships for circular cylinders all appear to have a more pronounced 
maxima than the relationships for the elliptical cylinders. Fourth, and also discussed 
previously, for large angles of twist, the relationships for the elliptical cylinders 
coincide with those for circular cylinders.  

With careful study of these four figures, other points can be made. Fifth, 
without exception, the torque level at first fiber failure is lower than the torque level 
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at first matrix failure, indicating that all cylinders soften, primarily due to the 
geometric effects of wrinkling. Sixth, the torque levels for first matrix failure for the 
circular cylinders are higher than for the elliptical cylinder, and these levels are not 
particularly sensitive to the magnitude or mode shape mix of the imperfection. 

Differences that can be attributed to the sign of the twist can also be identified. 
In particular, and seventh, for all cylinders, first matrix failure occurs at a larger 
angle of twist for positive twist than for negative twist, but first fiber failure occurs 
at a smaller angle of twist for positive twist than for negative twist. Eighth, the 
angle of twist for first matrix failure for positive twist is practically independent of 
cylinder geometry and imperfection ID and occurs for 1.2! " . In fact, for a 
negative angle of twist, while cylinder geometry appears to be important, the angle 
of twist for first matrix failure does not depend strongly on the characteristics of the 
imperfection. Ninth, the torque levels for first matrix failure and first fiber failure 
are always greater for positive twist than for negative twist. 

Finally, from the data for failure counts given in Figures 7 and 8, and from 
similar data for the cases in Figures 9 and 10, not presented, it can be concluded 
that for all cases considered, at first fiber failure there is more damage in a circular 
cylinder than in an elliptical cylinder, and the imperfection amplitude has more 
effect on the damage accumulation at first fiber failure in a circular cylinder than in 
an elliptical cylinder. Also, a negative twist results in much more damage at first 
fiber failure than a positive twist. 
 
 
CONCLUDING REMARKS 
 

Results of a study to determine the character of the response, including material 
failure, of noncircular composite cylinders to a torsional loading are presented. A 
quasi-isotropic laminate is considered. The maximum stress failure criterion with a 
material degradation scheme is employed to study the accumulation of material 
damage until first fiber failure occurs. A counterpart circular cylinder is used as a 
basis for comparison. An important difference between the circular and noncircular 
cylinders is the difference in the deformation patterns for increasing levels of twist 
or torque. Circular cylinders deform in the form of wrinkling of the cylinder walls 
uniformly with circumferential location, whereas the noncircular cylinders deform 
more in the flatter portions of the cross section than in the more curved portions. 
This difference leads to differences in damage initiation and accumulation. In 
elliptical cylinders, material failure begins at a location near the end of the minor 
radius and spreads away from that location, whereas in circular cylinders, damage 
begins and increases more uniformly around the circumference. This difference also 
leads to a difference in the torque vs. twist relationships. The relationships for the 
counterpart circular cylinders have a pronounced maximum torque capacity, 
followed by a decreased torque capacity, whereas the maximum and subsequent 
decrease for the elliptical cylinders is less pronounced. However, at first fiber 
failure, the torque vs. twist relationships for the two cylinders geometries coincide. 
Pronounced differences are evident in the response to a negative twist and the 
response to a positive twist. 
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Figure 3. Mode shapes and circumferential variation of the normal displacement of first and 
fourth eigenmodes for negative twist of an elliptical cylinder 

(a) first buckling mode shape (b) fourth buckling mode shape 
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Figure 4. Mode shapes and circumferential variation of the normal displacement of first and 
fourth eigenmodes for negative twist of a circular cylinder 

(a) first buckling mode shape (b) fourth buckling mode shape 

(c) normal displacement of first buckling mode at cylinder midlength (x = 0) 
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(d) normal displacement of fourth buckling mode at cylinder midlength (x = 0) 
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Figure 5. Torque-twist response of elliptical and circular cylinders for perfect (no buckling) and 
imperfection ID 01 (no material failure) 
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Figure 6. End view of deformations of cylinders with imperfection ID 01 
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 Figure 7. Progression of failure in elliptical cylinder with imperfection ID 01 
 (Maximum possible failure count: 195,840) 

(a) torque response to twist in negative direction 
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 Figure 8. Progression of failure in circular cylinder with imperfection ID 01 
 (Maximum possible failure count: 195,840) 

(a) torque response to a twist in negative direction 
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Figure 9. Torque-twist response of the elliptical and circular cylinders for imperfections ID 01 
and 11 
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Figure 10. Torque-twist response of the elliptical and circular cylinders for imperfections ID 04 
and 14 
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